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Content

Tuesday 10.06, 09h15-12h00 & 13h15-15h00:
Basics of magnetism
Magnetism in matter

Wednesday 11.06, 09h15-12h00 & 13h15-15h00:

Magnetic field sensors

Thursday 12.06, 09h15-12h00 & 13h15-14h00:
Magnetic imaging
Nanomagnetism
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Basics of magnetism

 Lorentz force
» Maxwell equations
 Basics of magnetostatics

 Basics of electrodynamics
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The four interactions (the four forces)

All physical phenomena in our Universe come from four fundamental forces.

STRONG FﬂEGE‘

binds the nucleus of an atom

ELECTROMAGNETIC FORCE
X
7

holds electrons in place

WEAK FORCE
f Energy
S _hjﬂ;__hfﬂ__r«_-’"‘*—'ﬂ
o Radiation

"—\.\_\_\_\_\--
Radioactive L
Atom * e

allows radiation Particle

GRAVITY

holds galaxies together
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Force

Nuclear weak
Nuclear strong
Electromagnatic

Gravitation

«Mediators»

Bosons (W, Z)
Gluons
Photon

Graviton

atom ~10"°m

P

nucleus
~10%4 m

Action Distance dependance
(m)
10-18 1rr a1l
1015 1r’
o0 1/r?
o0 1/r2
O electron
<108 m
proton
(neutron)
quark
<1018 m

~1015 m

®

J
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Electromagnetic force: Lorentz force

Rubber

— Rubber
= E F

Z 29

F =g(E+vxB)

«electrical» forces

Rubber

Proton

®

\ Electron

—

0}

S

N N

Repulsive

S S

Repulsive

S = <= N

Attractive
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Electromagnetic force: A very important force

All the forces we experience in daily life, above the
nuclear scale and except for gravity, are
electromagnetic!

Photons \\

G XV 1.7
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The electric charge

The electric charge is:
Quantized
Conserved

Quantized:
All known microscopic particles and macroscopic objects possess an electric charge that is an integer

multiple, either positive or negative, of the charge of the electron.

g=ne neZ avec e=1.602176634x10" C

Conserved:
The total charge of the Universe and all closed systems is constant. A positive or negative charge cannot

disappear on its own.
A positive charge can "annihilate" an equal negative charge (e.g., electron + positron — 2 photons), but

the total charge remains the same.

7 30,G XVII
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Charge (C)
534x10720C
1.07%x10°1°C
1.6X10°1°C
1.47%x 10717 C
1075 C

10712 C
10°6C

10°6C

104 C

10° C

10° C

10° C

(—1/3)e

(2/3)e
e

92e
~10%
~107e
~1013e
~1013e
~10%%e
~10%%e
~10%%e

~10%8¢

Particle/objet

Quarks (down, strange and bottom)
Quarks (up, charm and top)

Electron (negative), Proton (positive)
Uranium nucleus

Typical dust particle

Typical microwave frequency capacitors
Typical audio frequency capacitors
Rubbing materials together

Alkaline AA battery

Car battery

Earth (without the atmosphere)(negative)
World's largest battery bank

Note 1:

Quarks, which are particles with a fractional charge, cannot
be separated from the hadrons (protons, neutrons, pions,
etc.) they form, and therefore, we do not find them
"isolated."

ote 2:
As of May 20, 2019, the elementary charge, denoted as e,
is by definition exactly equal to:
e=1.60217663410"1° C
Until that date, the value of the elementary charge was:

e=1.6021766208(98) X 10°1°C

where the two digits in parentheses represent the
experimental uncertainty in this value.
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F=qg(E+vxB)

Who produces the E and B fields?
Static and moving electric charges.

(and certain atomic and subatomic particles with non-zero intrinsic magnetic moment)

How can we define and calculate the E and B fields?
With the Maxwell's equations.
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T Electromagnetism:
A complete set of equations.

% oW

Maxwell equations

: Electric field (V/m)
: Magnetic field (T)
: Total charge density (free + bound) (C/m’)

Total current density (free + bound) (A/m*)

Lorentz force

v.E=L
&
V-B=0
VXE:—a—B
ot
OE
VxB=ud+ s, —
Hod T & o1
F=qg(E+vxB)
F
a=—
m

2nd Newton law

Complete description of
the classical dynamics
of interactions between
charged particles
and electromagnetic fields

(classical electrodynamics).

The Maxwell equations are the mathematical expression of experimental results

7 37,G 337,72 455,J 248
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"Problems of Electromagnetism"

Charges
static and moving
p(X,1)
J(x,1) Maxwell
Newton
F(x.f) 4 E(x,1)
X
’ N\ B(x,1)
Lorentz
Forces Fields produced by
on charges charges
Maxwell
v.E=L
80
Newton Lorentz V-B=0
F OB
S _ VxE=—"—"
a o F=¢g(E+vxB) X o
OE
VszyJ+yﬁfa—
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(Maxwell) -Gauss:

(Maxwell)-Faraday - Lenz:

(Maxwell)-Thomson:

(Maxwell)-Ampére:

The names of Maxwell's equations

Differential (local)
form

V.E=£
80

VXE:—ﬁ—B

ot

V-B=0

OE

VXB = pyd + pyey —

ot

Integral (global)
form

qSE.ds=ijpdV
3 %

OB
<£E-dl=—_!5-ds

CJSB-ds=O
S

gSB-dlzyon-ds+yogo
C S

|

S

%K s

ot
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Maxwell equations
(macroscopic and microscopic)

Z237,72Z44,7 455, 248

Microscopic equations: V-E= P
€0
V:-B=0
2 Fields (E, B) VxE:—a—B
2 Sources (p, J) ot
VxB=pud ok
Total («free» + «bound») charges and currents X B = Hed ¥ o8 E
Macroscopic equations: V-D=p
f
V-B=0
4 Fields (E, D, B, H) viE-_B
2 Sources (p;; J)) Ot
/ VxH=J, + D
ot

«Free» charges and currents

1.14
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Total charge density

p . Total charge density (free + bound)
X)= x)—V-P(x
P ( ) P / ( ) ( ) p, - Free charge density

«free» charges

1 Z dV contain a large number of

P S (X) - dV ' q electrons, atoms, and molecules around
i(charges libre) of the x position

«bound» charges p,: Electric dipole

of the molecule n

P(X) - Z pn pn = Z qi,nxi,n

dv n(molecules) i(charges) P(x): Polarization

1.15
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Total current density

OP(x) J: Total current density (free + bound)
J(X) - Jf (X) +Vx M(X) + ot J,: Free current density
"Free currents”
1 dV contain a large number of
J r (X) = Z q.V. electrons, atoms, or molecules around

dV i(free charges) of the x position

«Bound currents"

1 _ q. m,: Magnetic dipole
M(x)=— Z m m, = A Xin X Vin of the molecule n
d V n(molecules) i(charges)

M(x): Magnetization

1.16
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Sources of fields E and B

pf(x)_le[ Z qi]

i( free charges)

f (x) = ( Z q iVi]
dV i(free charges)

P(x)=§ 3 pn] Po= > 4%,

n(molecules)

M =—| ¥ mn) m,= Y

V n(molecules)

i(charges)

i(charges)

i,n

Yes, almost exactly.

Is the only source of the E and B fields the charge g; (static and moving)?

(There is also the intrinsic magnetic moment (or spin) of particles (electrons, protons, neutrons,...)

1.17
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Free and bound charges and currents

"Charged" molecule or atom
(i.e., positive or negative) fixed
or free to move

("Free" charge)

Fixed or free to move "neutral" molecule or atom

with non-uniform charge distribution (e.g., electric dipole).

(“Bound” charges)

Fixed or free to move "charged" molecule or atom
with non-uniform charged distribution

(e.g., electric dipole).

(“Bound" and “free" charges)

"Bound" charges: The total electric charge contained in a volume corresponding to
the size of the molecule/atom is zero. However, the distribution of charge is not
uniform in the molecule/atom and therefore produces an electric field also outside
the molecule. Since they also produce an electric field, they should be considered
sources of the electric field. These are "bound" charges in the sense that, at a short
distance in the volume of the same molecule/atom, the charges of one sign have
corresponding charges of the opposite sign.

Obviously, we could only consider the total charge density, but in many problems
it is convenient to be able to separate free charges from bound charges, using
Maxwell's macroscopic or microscopic equations, whichever are easiest to apply.

1.18
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Conductors

@ Q‘ @° 0
‘ ‘ ‘ ‘ ' ‘ An electron "free" to move. ("Free" charge)

‘ Fixed atom with lack of electrons (positive ion). ("Free" charge)

/
X
X
N

Fixed or free to move "neutral" molecule or atom
2 e with non-uniform charge distribution
‘ @ C) (e.g., electric dipole). (“Bound” charges)
~ ~
* X
> ~

1.19
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Conductors

‘ ‘ ‘ ‘ ‘ Fixed atom with lack of electrons (positive ion)
‘\4 ‘\ ( ‘ Electron "free" to move

‘ ' ‘ ‘ "Free" Electron Motion in a Conductor
‘/' ‘\‘/v ( ‘\ ("Free" current)
‘ ‘ ‘ ' "Bound" current: "Classical" (i.e., non-quantum) view: the motion

around the nucleus of electrons determines a total "bound" current that
is non-zero or zero. "Bound" current can be thought of as a non-
dissipative current localized in the atom due to the movement of
electrons. This "bound" current produces a magnetic field like a "free"
current. If the "bound" current is nonzero, the atom has a nonzero
orbital magnetic moment.
The atom can also possess a non-orbital magnetic moment (therefore
not associated with motion around the nucleus of electrons) due to the
@ Noyau atomique intrinsic magnetic moment (spin) of each electron.

Conductors and insulators

‘ Electron «lié» au noyau

Mouvement des électrons dans un atome
autour du noyau (Courant «lié»)

1.20
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Maxwell equations: Integral form

Microscopic equations

Differential form

Integral form

vV-E=£
€
V:-B=0
Vsz—a—B
ot
OE
VxB=ud+ e, —
Hod T Hyég Py

Mathematical theorems of Gauss and Stokes

gSE-ds=ijpdV
Eb V

S

CﬁB-a’s:O

S

451@ dl = —j— ds

<j>B dl = ,uon ds+ 11,& j— ds

1.21
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Macroscopic equations:

Differential form

V-D=p,

V-B=0

OB

VxE=——

Ot

oD

VxH=J, +—

Ot

—

Integral form

Mathematical theorems of Gauss and Stokes

@D-ds:jpde
S V

CJSB-ds:O

<j>E dl = —j— ds

<_f>H dl = jJ ds+j— ds

1.22
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Link between the microscopic and macroscopic equations

Microscopic equations: Macroscopic equations:
0
V-E=— ‘D=
;. V-D=p,
V-B=0 V-B=0
B
VxE=_%B vxE=-8
ot Ot
OE oD
VXB:/JOJ_FIUOEOE VXH:Jf_I_E
p(x)=p,(x)—-V-P(x) D=¢,E+P
1
J(X):Jf(x)+V><M(x)+aP(X) H=—B-M
ot Ky

P : Electric dipoles density (P =0 in vacuum)

M : Magnetic dipoles density (M=0 in vacuum)

Z744,7 455,] 248 1.23
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Others quantities and relations:
A P : S
X, =—— Electric Susceptibility
&E
P=gxE D=¢E A M .
) X, = Tl Magnetic Susceptibility
M=y H H=—B D
2 E= T Electric Permittivity (or dielectric constant)
» B : -
U=— Magnetic Permeability
H
Linear Isotropic Material:
(X.> X» €5 1) Scalar (depends on the specific material, temperature, frequency, .....)
Non-linear isotropic material:
(X.» X,,» 65 1) scalars (depends on the specific material, temperature, frequency, of |E| and/or |B |
Linear non-isotropic material:
(X.» X,,» €5 M) tensors (depends on the specific material, temperature, frequency, of the direction of E and/or B,....)

Non-linear isotropic material with hysteresis:

(X» X,,» €5 1) Scalars
(depends on the specific material, temperature, frequency, of |E| and/or |B

, of previous values of E and/or B,...)

...... 194
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Quantities and Sl units

electric field (V/m)
magnetic induction or magnetic field (T)
electric induction (C/m?) CHAMPS

magnetic field (A/m)

— oW

p: charge density (C/m?)
J: current density (A/m?)

L . L SOURCES
P: electric dipole density or polarization (C/m?)
M: magnetic dipole density or magnetization (A/m)
A: vector potential (T/m) POTENTIELS

V. scalar potential (V)

1.25
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Conditions at the interface between two materials
(consequence of the Maxwell equations)

EI’BI

n Dl > Hl JS 'Ps
| C
| e | e ¢ p, . Density of "free" surface charges (C/m”)

J. : Density of "free" surface currents (A/m)

From the Maxwell equations in integral form it can be shown that:

r(Dz—Dl)-nsz (D2n:D1n
(Bz_Bl).n:O for J.=0,p, =0 = B =By,
(E2_E1)Xn:O Ezt:Elz
\(H2_H1)Xn:JS L 2t:Hlt

1.26
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Relations Conditions Relations | Conditions
_ None — None
Bln - 2n Elt _Ezt
H 1 — H ¢ No free currents Dl n — D2 n No free charges
&
B = i B No free currents, E — _2 Ngfree charges,
1¢ 2t Linear material In c 2n Linear material
Hy 1
&
H — & H Linear material D — _1 D Linear material
In 2n 1t c 2t
H 2

n: normal to the separation surface
t. tangent to the separation surface

1.27
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n

] ASDy'
Y/

R

cJSD ds = .[ odV (Maxwell)
S

Vv

I pdV =0 (assuming no free charges)
14

ForAh > 0=
CJSD-dS =(D,-D,) - nAs=(D, —D, )As =0
S

=
(Dln _DZn):O
p—

Dln :D2i1

1 E
a7
Mot —t

oB
CJSE-dl:—J.E-ds (Maxwell)
C S
OB
For Ah > 0= j—-dszO
o
S

@E-d];(t’xn)-(Ez—El)Al=O

C

=

(Elz - Ezt) =0
f—

Elz - EZz

1.28
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4‘)B -dS=0 (Maxwell)
S
For Ah > 0=

<j}B-ds ~(B,—B,)-nAs=(B, —B, )As=0

S

—
(Bln_BZn):O
—

B =8B

1n 2n

qSH dl = J.J ds+j— ds (Maxwell)

jJ -ds =0 (assuming no free courants)

ForAh—>0:>J-— ds =0

<ﬁH dl = )-(H, —H,)Al =0

1.29
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Conservation laws
(consequence of the Maxwell equations )

1. Charge conservation

2. Energy conservation

3. Momentum conservation

S=ExH

E-D+B-H
2
P=J-E

W =

y

0
vV J+P =0
ot
0
V-S+—W+P=0
ot
3
ot ¢ ~0x. "

Energy flow (Poynting vector)
Energy density

Dissipated power

T.:—El.-Dj—Bl.-Hj+%(E-D+B-H)~é‘ij Maxwell tensor

1.30
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Potentiels

V. Scalar potential [V]
A : Vector potential [T/m]

Why do we introduce potentials?
Because they often simplify the solution of practical (and theoretical) problems.

Definition of potentials (compatible with Maxwell's equations):

B=VxA E:—VV—%—?

7 503,7J 239 1.31
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meﬂwkhmmﬂmdwﬂmmdﬁmMmLB:VmAdEz—VV—@é
ot
we obtain:
V(x.1) = jp(x D) gy
72'80 p Note: ‘ . .
, X—X The potentials at time ¢ depends on the sources at time temps '
r=t— due to the finite velocity of propagation of the electromagnetic perturbations
,U J(X! t!) ¢ (i.e., the speed of the light ¢)
A(X t) 0 d V but in many problems the distances are short enough to consider #'=t¢.

Programs to solve electromagnetic problems often:
1. Compute A and V from the sources J and p known (or determined by iterations)
2. And after compute B and E using the definitions:

B=VxA E:—VV—%—?

Z 503, W Electromagnetic four-potential 1.32
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Electrostatic and magnetostatic conditions:
Definition

Definition of the electrostatic/magnetostatic conditions
La densité de charge p est indépendante du temps.
La densité de courant J est indépendante du temps.

P_o T_o v

ot ot
Electrostatic: Magnetostatic:
E_, B _, |
6t 8f Note: ,
V'E:,O/g() V-B=0 Chargeconservation:V-J+a—/;:0
VXE=0 VxB= U, J In electrostatic static regime : (Z—/t) =0
E=-VIV B=VxA =

V-J=0
4 J /
V(x)=— [ LK ) dv A(x) =22 | (x ), dv
47280V|x—x 47Z'V|X—X|

1.33
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General

V-D=p

V-B=0

VxE_—a—B

Ot

VxH = J_|_8_D

ot
p(x,t)=p,(X,1)=V-P(X,1)
J(x,0)=d ,(x,1)+V xM(x,1) + 5Pé’;’t)

V(x,t)= p(X, t)d3 '

4re, -l-
J(x',t )

A(x,1) = ,uo d’>x'

Static conditions

V-D=p
V.-B=0

VE=0

VXH:J

p(x)=p,(x)-V-P(x)
J(x)=J ,(x)+V xM(x)

p(x)d3 '

Vix)= dre, s,

A(x) = Ho I|J(X)d3x'

1.34
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Electrostatic

E(x) =

[ p(x) (x=x)

d>x'

472'80 % ‘x —x'

2
‘x—x'

1.35
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Magnetostatic

B=VxA

B

A(x) = j dV

2

1.36
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Magnetic field sources

Charges in motion

Intrisic magnetic moments of particules (electrons, protons, neutrons ...)

Current
in wire

Loop of
wire

Coils with currents
<100 T typ.

1074 T -aif} FEarth's magnetic field

R T L 10-5 T
- ’ R 10-6 -} Traffic, appliances, etc.
10-7 T
10_8 4 4 Power transmission lines
(at 10 m)
-u‘!; 1079 T
|S 10-10 -} Human heart signals
S ATl ¥ A . A 10~ T -~} Optic nerve signals
- ;l".-i-?":'h_ - -..'- ’ .""i*‘.'i:.‘i ' 10-12 -ugp Muscle impulses; spontaneous brain activity
IR T 2 ol T 10_13——‘ Evoked brain signals
Solenoid Bar Magnet The Earth ol
10~ 13 —

Sources of «weak»
magnetic fields
(down to fT)

Permanent magnets
<10 T typ.

Earth (on the surface)
~0.1 mT

A distribution of static electric charges produces a static electric field.

A distribution of steady electric currents produces a static magnetic field.

1.37
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Biot-Savart law

Biot-Savart law:

The magnetic field produced by a steady current

dV

J(x")xr
B

Magnetic field B produced by
the currents in an infinitesimal
volume element dV

My J(X)xr
B(x)—4ﬂj —dV

7 r

Magnetic field B produced
by the currents in the
volume V

Note: A moving point charge does not produce a constant
current. This means that a point charge does not produce a
static field. We are therefore forced to deal with extended
current distributions.

1.38
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Note 1: «kDemonstration» of the Biot-Savart from the vector potential A:

J(x)

—dV

In static conditions: A(X)= Hy J

=

B(x):VxA(x):f—;ij( J(X'), jdV

x—x]

Math.:Vx(f V)= f(VxV)+VfxV

j—
vx| 30D |1 (VxJ(X))+V x J(x')
=x]) [x=x] [x- |
. The "curl" is computed in x-coordinates and
but: J(x’) is constant vf/)ith respect to X.
1 r -
VxJ(x')=0 V(|X XJ_LQ (r=x-x'; l'=£)
—
B(x)= IJ(X)erV B (x)= Hy J(szrdV
4 r 4

v

G227, 7 304 1.39
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Note 2:
Equivalent equations

Ly, Jx
dB(x)=7— >

- >

dV; J=

|~

U
&
e
T
|
|
a3

Note 3:
Analogy E and B fields

pdV/

4ﬂEb r

dE(x)=

E(x) =

J‘ p(x )r

4re,

,u

; dV = 8dl

]dl

J(x")xr

dV

A

=

2
r

1.40
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Ampere law

—.ds

OE
%

(Maxwell)-Ampere law: CJBB -dl = p, I J-ds+ ¢,
C S

S

Static conditions: %—E; =0

—
$B-dl =, [3-ds
C S

In magnetostatics, the Ampere's law allows us to determine the value of the magnetic field based on the
given electric currents. This law is the magnetostatic equivalent of Gauss's law.

To be applied analytically in a simple way, Ampere's law requires that the considered problem has "high"
symmetry (as in the case of Gauss's law for the electric field).

1.41
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Exemple: Current in a conductor

a. Computed with the Biot-Savart law

%,I\ _Zl_OL‘;lfxf' — dB(x,y,O): Ho 2]dy2 VXTI
T \\\r—(x2+y2)é T 4 (x*+y*)
~N =
¥ \\
N =xtof= ay _ xtgl =x =>dy=x
9\\P Y g d@ d& 8 28 Y
0 = ~u =
Idy ~ -
dB(x, y,0)= = XF=
oy 0= a2y
_ Mo ! -
= x(1+tg260) cosOdo
ar x2(Lg2e) T80 P
:’uolcos@dH(i)
4 X z
s
po 1 . 7t to I »
B(x,»,0)= = ~¢ [ cosfdf ="""¢
Xz 270X o i
B(yno)=
R N PN

1.42
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b. Computed with the Ampere law
OE

Ampere law: CJ')B dl = yon ds + ,& J' -ds
Ot
: . OE
Static conditions: — =0 The symmetry of the problem
ot allows one to "intuitively" determine

the direction of the B field. A
= PB-dl =y, [ I -ds B e
Cylindrical symmetry: B = B@
Current in the wire:IJ-ds = _[Jf ds=1
S S

= ﬂOIJ°dS=ﬂ0[
s

C 2, 2
indri ry 0 = +
ylindrical symmetry: B = B r=Ax+z

= Cf)B-dl:meB

: /
Mol

= B=

Current flowing

272'7" out of the page

1.43



EPFL

Exemple: Magnetic field inside a infinite rectilinear wire

Computed with the Ampere law

Amperian loops B

21R

Bocl/r

R

Ampere law: d} B-dl =y, j J-ds+ ¢, .[ aa—E-ds Static conditions: oE _ 0

c(r S(r) S(r)
Cylindrical symmetry: B = B@

2 2

ot

The symmetry of the problem

7Z'r I/ (14 141 " :
For r < R: J‘ J.ds = J‘ Jf ds=1] _= ]_2 allows one to '1ntu1tlvely determine
: TR R the direction of the B field.
S(r) S(r)
2
C(r)
gS B-dl=2rnrB
C(r)
I r
= B=E"" (forr<R)
27 R

1.44



=ret Example: Magnetic field produced by a current
in a single turn circular planar coil

Computed with the Biot-Savart law

_Hy , I ox—x' o ul txF
B(x)—4ﬂ_}[J(x)x|X_X'|2 |X_X'|dV 47ch5 ~—dl

No analytical solution (i.e., only numerical solutions), except along the coil axis .

Analytical solution along the coil axis B(0,0, z):

aB=t e s = aB —apsino=* 1 Gng
4 r 4 r
R

rsin@=R et r=+z>+R* = sinf=

Vz2 + R?

. I R IdIR R R AP N
dB. =dBsinf = £o a;l _ o al — D BT
dn P JFr R 47 (21 R) W
T
—
27R 27R I | B S >
T . IR f X L
B(0,0,2)=2 [ dB. =22* o [ Al =—2 s L
0 4r (22 +R2) 0 Z(R2 +ZZ) SRS
PN
= v o
uJIR? w1 . _ T
B(0,0,2) = 20 2)%2 B(0.0,0)= 20 “ | Electric Eﬁﬂi:j f;ld ?
2(R+z ) R current loop current

ldL  $x
<

Notes:

1.The symmetry of the problem is not sufficient to
use Ampere's law to obtain the magnetic field
(Ampere's law is valid but "useless" for this problem).
2.An analytical expression for the field can only

be found along the axis of the coil.
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Example: Magnetic field inside a long solenoidal coil

(b)

I: Current (A)

L: Coil length (m)

N: Number of turns (-)

n=N/L.: number of turns per unit of lenght

Computed with the Ampere law

OE
(J‘)Bdl yOJ-J ds + &, 8 -ds

C

. » OE
Static conditions: — =0

Ot
No bouded currents: uOIJ -ds =, J. J, -ds

The symmetry of the problem
allows one to "intuitively" determine
45]3 dl = H ij -ds / the direction of the B field.

But: B~ 0 outside (far from the coil); B = BX inside

Not easy to demonstrate

:><J-)B-a’l;BL+O+O+O=BL

et: yonf -ds = p,InL

=

B = p,n

B
Exemple: B=1T ;n=10/m =I=—=800A

Holl
1.46



EPFL Example: Magnetic field inside a long solenoidal coil
filled with a linear material

Computed with the Ampere law

oD
CJSH'dl:_‘-Jf'dS+J.E'dS
C S S
oD

Static conditions: o =0

In a linear material: B= yH = g, 1. H
IJ prds=1InL
S

B =0 outside; B = Bx inside
—

C]SB-d1=ﬂoﬂr<_ﬁH-dl =ﬂour_[Jf -ds = piop, InL
C C S

CI)B-dl;BL+O+O+O:BL
c

(b)

I: courant =

n: nombre de tours par unité de longueur B =y In
L. perméabilité magnétique
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Empty solenoidal coil

M =0
H=nl
B=uynl

Solenoidal coil filled with a linear material

-
o
L . .'..
= i gy
,,,,,,,, LI I B L
A T X0 T

= = > T
5 )
----- Eatiati th,

M =yH
H=nl
B=p,(H+M)= p,(1+ y)nl = pyp1,In

1.48
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Magnetic field produced by different «structures»

Planar coil (with several turns)

W

Infinite wire

Solenoidal coil

—_—

Toroidal coil
I
&

1.49
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Trajectory of a charged particle in a B-field

1. Uniform B-field and velocity v.B

r =rcos(wt)X +rsin(mt)y —
= v=r=—rosin(wt)X +rocos(mt)y =

Uniform circular motion —a=v=F=—ro’ cos(w)k - ra’ sin(wf)y =

A Sa=-0r=0r¢,

F=ma=gvxB=—qvBe,

j—
qvB dv 5 .
a=——-e, et a=—=—-wre, ¢t v=or
m dt
—
my
y=—— Larmor radius
qgbB
q
w=—2>B Cyclotron frequency
m

Note: for particles with >0 and <0 the direction of rotation is opposite
Z 366 1.50
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2. Uniform B-field and arbitrary velocity v

®
»- —— -
B I\A o -
- Uniform circular motion in the perp plane. to B
r AVANANAN| and
> constant speed in the direction of B
VVVVUV
T
q>0
dv A A A
F:mE:qva ; B=Be, ; v=ve +v e
dv q dv,
e o € -(VxB):E:O = v,=const
W _4 B)=0 )=0 t
V=V (vxB) dt(v V) dt(v) | v|=cons

2 2 2
V) =V' —v, =const= v, =const

dv d(oxr)
dt dt

a=

my,
qB

vV, =or = r=

Z 366

=0OXxv, ¢t a=

=£VJ_><B = m:—zB
m m

1.51
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5. Charged particles that are approaching

4. Magnetic "mirror" (Z 375)
the Earth (Z 378)

Charged particle
. approaching Earth
B
a javg
\ \ g /6\ Q/-_/Q/‘JQ/
\ N\ E (Y
o A\ \7 \ \ \ ZAVA [
@A LN / T ) AYA
- [ ) ] WL 7
1 11 | JE | i
s ‘)HMH j/’/l/J - B
. N_—T7
Coil 1 y Coil 2
i B

The charged particles are trapped by the Earth's magnetic field. A charged particle
spirals between two magnetic mirrors near the North and South poles. These particles
collide with atoms and molecules in the atmosphere. The de-excitation of these atoms

and molecules creates the Aurora.

The mirror effect results from the tendency for charged particles to bounce back from
the region where the field is strong (magnetic confinement).

Z 375 1.52
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6. Speed selector

S S,

B (into page) Fg=qvxB

No deviation =
F,=F, >qwB=qE =>v=E/B

+ +f+ +

Pl i 1

v

The particles passing though the hole in S, (i.e., the selected particles) have a velocity:

1.53
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7. Mass spectrometer

Tonization Acceleration

Gas inpu; I |v0 ! | v
— ) e ——— J

ms=> my=> m,;
(but g;=¢9,=q,)

A

Detector

Mass analysis

Ionization:

Acceleration:

Mass analysis:

atoms = ions
(by bombardment with electron beam)

1
v, =0; Emv2 =qAV ;

mv 1 ZmAV U
y =——=—\—
gB q
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lon count

Spectre de masse de l'air

14N+
14N22+ 14N2+ 1602+ Ar+
1000
800
: 60"
600 - L0y
' H20+ 14N15N*
400 |
Co,*
200
: Ar2* 160180+
0-.‘ " _._A " . N e || N e,
10 15 20 25 30 35 40 45 50

m/z
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8. Magnetic lens for electron microscope (Z 358)

Charged particles (electrons) with initially parallel (or nearly parallel) trajectories are focused by a circular current loop.

—_——— e P = -

- : = —
w
9. Magnetic trapping (Z 377)

Trapping of the magnetic field at the local minimum occurs for atoms
whose total angular momentum is anti-parallel to the local magnetic field
1) The Ioffe-Pritchard trap is designed to trap neutral

/\ x“
= /\\ /*\\
/ / / I particles but with a non-zero magnetic moment.

‘\
| 2) It is impossible to produce a local maximum of the
E p= -m-B ', E—— ' magnitude of the magnetic field in free space. This means
= = ) that it is not possible to trap a particle with a magnetic
|

Note:

\\ / moment parallel to the local magnetic field.

\\
= e

Figure 12.9: The loffe-Pritchard configuration produces a minimum of |B(r)| at its center. Arrows
indicate the direction of current flow in each wire.
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Electrostatic energy and magnetostatic energy

Electrostatic case:
The total electrostatic energy Uy of an isolated charge distribution is the total reversible work
required to create the charge distribution and its associated electric field.

Magnetostatic case:

The total magnetostatic energy Uj of an isolated current distribution is the total reversible work
required to create the current distribution and its associated magnetic field.

We can demonstrate that:

In vacuum:
1 : 1 : :
U, = 5 & I |E|2 dv U, : total electrostatic energy  u, = 550 |E|2 u, : density of electrostatic energy
14
1 2 : 1 2 . :
U, = —I|B| dv U, : total magnetostatic energy Uy = —|B| u, : density of magnetostatic energy
21,y 24,
In presence of a linear material:
1 : 1 : :
U,= 5 I E-DdV U, :total electrostatic energy  u, = EE ‘D u, : density of electrostatic energy
vV
1 : 1 : :
U, = 5 I H-BdV U, : total magnetostatic energy  u, = 5 H-B u, : density of magnetostatic energy
V

G 199,17 165,Z7 180,J 212, Z 385 1.57
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Coupling between electric field and magnetic field

Electrostatics and magnetostatic: "hidden" coupling

v.E:ﬁ V-B=0
€
VXE:O VXBZIUOJ

Electrodynamics: "manifest" coupling

v.Ezﬁ V-B=0
€9
0B OE
VXE:_E VXBZIUOJ‘FEOIUOE

A time-dependent field B "produces" an E field
A time-dependent field E "produces" a B field

1.58
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Transformations between inertial frames of reference

Principle of relativity:
All the laws of nature must be the same for all observers of inertia.

J=J-pv+(r-1)(J-v)v p':y(p—J-V/cz)

@é(v/‘v‘) yé(l/\/l—vz/cz)

for v<<c, y =21 (non-relativistic approx. ) =

E'=E+vxB B'=B-(vxE/c’)

D'=D+(vxH/c’)  H=H-vxD

A=A—ov/cl VeV —A-v v S Example of a "hidden"
B 4 B coupling

J'=J-pv p=p-J-v/c between B and E

1.59
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Example: Charge q in motion with constant velocity v=(v,0,0):

From the transformation law of the previous page:
EX:E'X Bx:B'x

' ' _ ' ' 2
E,=y(E',+vB')) B,=y(B',—vE'./c")
E,=y(E',-vB') B.=y(B'.+vE'/c)

]/E(l/\/l—vz/cz):yZI

In this example B'=0

—
E =E' ;E =yE' \>E' | E =yE' >E'"

1
B =B' =0; By:—;/vE'Z/czz—vEZ /¢ B.=vE, /¢* (= B= C—2V><E)

X

In the S reference system,
The magnetic field is non-zero!!
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Example: Current / in a neutral conductor.

The wire is stationary in
reference system S

N
s S
vwwz0

The compass is still

in the reference system ',
moving at a constant speed v
with respect to S.

BI

—>F

E'xE+vxB
but p=0 = E=0 = E'zvxB

B’zB—(vxE/cz)
butE=0 = B’

112

B

In the S’ reference

'~ 0 _ system, the electric field
J'=J PV and charge density are
but ,O:O — J' ~J nonzero!!

I~ 2
p=zp-Jd-vi/c

2
but p=0 = p'=z-J-v/c

1.61
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Faraday's experiments...

/S

A

|03 D} D}

B® B® B(t)
Circuit in motion Static circuit Static circuit
in field B in a field B in a time-dependent B
independent of time produced by a moving field
source
& d
In all three cases, Faraday observed: |I = > avec &=—— .f B-ds
t
S(t)

S : surface inside the circuit C

Note:
The units of the induced electromotive force are volts [V].

G312 1.62
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The Faraday experiments:

1) "permitted" to Maxwell to formulate the (Maxwell)-Faraday-Lenz equation

OB OB
Vsz—E c_fE-dl:—_S[E-ds

2) "stimulated" the introduction of concept of "induced" electromotive force ¢.

gz—it j B-ds

S(t)

1.63
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Electromotive "force" induced, approximately...

The induced electromotive force &, always computed in the reference of C, is:

5E—i _[ B-ds:—iCDB
tsu) dt

(valid for all surfaces S, static or moving, having countur C,

with B in the static or moving reference frame with respect to .S)

but also:
£ j(E+v><B)-dl; jE’-dl
C(1) C(1)

(valid for all countours C in mouvement with velocity v
with respect to the static frame of reference, E and B are in the static frame of reference,

E' is the moving frame of reference with C )

We can choose to use one or the other equation depending on the one easier to apply.

1.64
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Example: Induced electromotive force in a closed circuit C

(b)

X
X
X

el b b 4 G G (B 8- B
XX XXX XAXXK

X
X
X
X
X
H XXX

Maximum flux

MC KX XK XK MK WK
XXX XX XXX XX

xX XK
% % (inward)
X X

B

B
(inward)

Flux
decreasing

XX XXKXXX XX

X
X
X
X

XXX XX XX
XXX XX XX

XXX x X X
X X X KM X X
%X X K
*® KN ¥ % X
XXX X X X
X X X X X X
X X X X
X X X X X X
X X X X X
X X 50 56 e
Zero flux

XXX XX XXX XX

Flux
through
coil is
decreased
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Example: wire moving in a uniform magnetic field

5=IE'-dl=j(E+v><B)-dl
C C

SIE=0=
e=[(vxB)-dl=vBI
C

Intuitive explanations:

(Seen from the fixed frame of reference):

Lorentz force on the moving electrons

F=evxB

,/I\AF
B
\Y

Mation of conductor

V

(Seen from the mobile frame of reference):

Lorentz force on the "static" electrons
due to the non-zero electric field in the
moving frame

F=cE =e¢e(E+vxB)=evxB
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Example: Homopolar generator (Faraday disk)

Sliding contact

"Intuitive" explanation (seen from the fixed frame of

: _ "Rigorous" explanation:
reference): Lorentz force acting on moving electrons

5=IE’-dl=_[(E+v><B)-dl but: E=0=

1
&= I(VXB dl ja)rBdr——a)R B =
e=—1.6x10"° C ¢ ?
- J_E_ wR} B
R 2R The induced "fem" and the current are

independent of time (i.e., "DC").
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=PFL Example: Fixed closed and almost closed loop
in a uniform variable magnetic field

d
B(t¢ c=——|B-ds
b 2 dt !
J AN
Z
Almost closed circuit: Z =00 = [ =0
Closed circuit: Z#0 = [#0

(fora)L<<R:>Z=a)L+R;R:>I:%)

B(?)
-b o | |
"Intuitive" microscopic explanation:
d VXE = _8_B
F ot
=
a time dependent B field produces a field E

The E and B field act on the electrons with the
Lorentz force F =g(E + vxB)
1.68
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G317

Microscopic "rigorous" explanation:

Static circuit =>v=0

—jE'dl jE+va jEdl

dB
g:——IB-ds:—j—-ds+<]5(va —I— ds =—rmr’ —
dtd ) ot dt
~ 0 !
but E=E ¢ (noteasy to demonstrate !)
—
E =J'E-dl=27rrE¢
5 dB Note:
E=—TTr — If the charges are initially stationary, the magnetic field does
dt not produce any force on the charges. However, a variable
— magnetic field produces a variable electric field that can act
on an initially stationary charge "locally" with the Lorentz
E— rdB . force. Once the charges are in motion, they feel both the
- _EZ(P magnetic force and the electric force.
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Note 1:

In a solenoid,

a time-dependent magnetic field
produces an electric field
(without demonstration).

W OW W W
mr

=

/

Increasing solenoid current

Induced £
",

! =
Increasing B2

Faraday's law descrbes an induced electric field.

Note 2:

In a capacitor,

a time-dependent electric field
produces a magnetic field
(without demonstration).

1.70
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Example: Moving conductor in time-independent B-field

"Method" 2:
I
e=[E dl=[(E+vxB)-dl
C C
--I.S‘-B{f'v —
/
—— EZI(VXB)-dIZI(VXB)-dl:VBZ
C 0
—
&= Blv
"Methode" 1: —
d d 2712 .2 2
¢=——|B-ds=-—0 o BV 1
dt | dt ° P=F,,v = (IB)v= ———= —=F,
dd V' Blv
(I)B:_Bl.x — dl.B :—Bl%:—Blv — g:BZV IZEZT

The power needed to move

the conductor at constant speed

is equal to the power dissipated in the resistor.
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Example: Coil in motion at speed v in time-independent field B

B
4 g=—ijB-ds=—id)B
dt < dt
Ji O,=-Blx =
\'%
[ d®, =—Bl§=—Blv
dt dt
= ¢=Blv=
v ]:E:B—lv
R R
[ ——>
X

B : Magnesetic field (0,0,-B.)
I : Current induced in the coil due to the mouvement of the coil in the non uniform field B

v : velocity of the coil
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Example: Convective (eddy current) electric currents

/ Pivot f"j"
/-,:f
I// /
4

\ plague conductrice
_/
N
B
\
v

régionfort B | faible B

do,
dt

ays

Induced current |

E=—

[=—
R

ays

Force on induced current I

F:@meB

The force F opposes the motion
~ viscous friction
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Note: The sign of the emf (Lenz's law)

The flux created by the induced current is opposed
the variation of the external flow (negative feedback)
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Applications of Faraday-Lenz Law:
Conversion of electrical energy to mechanical energy (and vice versa)

Mechanical
input

I. o, "
| J "-I . ,

do,
dt

=—NBAwsin wt

E=—
Metal slip

rings

Electrical
oultput

i Mechanical
output
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Inductance and capacitance

Surfaceof 4 Capacity (self-capacity):

+

! ce¥ [C] = C/V = F=Farad

Gaussian V

surface {
The capacity C of a conductor is the total charge Q

on the conductor when it is held at a potential of 1 V

(with all other conductors being maintained at zero
potential).

Inductance (auto-inductance):

Dy [L] = Tm2/A = H=Henry

The inductance L of an electrical circuit is defined as
the ratio between the flux of the magnetic field B
embraced by the circuit and the current /.
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Note:

Two common definitions of inductance:

1) The inductance L of the electric circuit is the ratio between the flux of the
magnetic field embraced by the circuit and the current:

A (DB
L=
(the flux is the one produced by the current / flowing through the circuit and not

the one coming from another source (another current, magnet, etc.))

This definition has two "disadvantages":

a) Flux is a physical quantity that is difficult to measure directly. The "circuit area" is not always easy
to determine, and in some cases it does not even exist (e.g. if the circuit "knots").

b) The definition assumes that the flux is proportional to the intensity of the current. This is not the
case when the flux passes through a non-linear magnetic material.

2) The self-induced fem of an electronic circuit 1s proportional to the rate of temporal variation of the
current / in the circuit. The parameter relating the fem to the current variation is defined as inductance
(or self-inductance).

dl
CTVar

This has only the disadvantage b).
1.77
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The capacitance matrix and the inductance matrix

The capacitance matrix C describes how a set of charged conductors influence each other electrically.
The capacitance matrix (which must be measured or calculated) relates the load O, on conductor i to the potential V; of conductor ;
for a set of NV conductors:

N 1 N 1 N N
@ =26V, Up =52 0Vi=522.CV,

=l i=1 i=1 j=1
Cii - Ci : Capac1tance The capacitance of the conductor i (i.e., C;) is
Cz'j avec l £ ] : Mutual C ap aCitanCC the total charge of the conductor when it is at

at a unitary potential (i.e.,/;=1 V), and all others conductors

are at a zero potential (i.e., V;= 0 forj #1i).

The inductance matrix M describes how a set of current-carrying circuits influence each other magnetically.
The inductance matrix (which must be measured or calculated) connects the magnetic flux ®@g; through the circuit with the current
[; in the circuit j:

N 1 N 1 N N
;=2 Myl Uy = EZcDB,ZJ,. = EZZMU-I,-IJ-
J= i= i=l j=1

M =L, : Inductance
M aveci# j : Mutual inductance

J43,1215, Z 136, 7 396 1.78
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J41, 7 396

Note:
It can be shown that:

c ot 1 pi(r)p;(r')
y 47 VIVJ ) !

C.=C, : Capacitance

C, aveci# j  : Mutual capacitance

_ Ji(r)-J,(r')
M,.j_4 ”jdedV —!
M, =L, : Inductance
M aveci# j : Mutual inductance

1.79



=PeL Self-inductance and self-capacitance:
More general definition

I;

vi ,
For low frequencies and low radiation losses =
=
L—L B-HdlV=— 2 U, C= L DdV—izUE

1 \ 1 \V\ 4
1 2 1 2
U,=—|B-HdV =—L]|I U,=—|E-DdV =—C\V
’ 2 'Il; 2 ‘ ‘ Energy stored in a £ 2 'J/A 2 ‘ ‘
inductor L with current / Energy stored in a

capacitor C with voltage V'

For linear materials: D = ¢E et B= ¢H

—
1 1 ., 1, ] ,
L=—[=BdV =[=BdV C=—:[eEdV =[¢EdV
1] u TR s -4
"Unitary" magnetic field "Unitary" electric field
(i.e., created by a current /=1 A) (i.e., created by a voltage V=1 V)

J 215, 1264, 7Z 395 1.80
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Demostration:
Energy conservation (see J 264):
1

Lry,-
2

R:R{V’} |[1| {ReDJ EdV}+4w1mD(wm—we)dV}LzsgSSls.nda}

14

%ij.-EdVJrzia;j(wm —we)dV+95 S-nda
v V i

Impedance: Z é%

For low frequency and low radiation loss =

;| | ReUJ EdV}

ol jw av L _ser
i | @C Iy

=L jB H*dV C:LIE-D*dV
R vl

For linear materials: D = ¢E et B= uH

Y

ik B dv _lejdV

Z=R+jX

lem{%}zvj { ImDJ EdV}mReU(wm—we)dV}}

g, =(1/2)(E-D+B-H)
Wy =(1/4)(E-D*+B-H*)
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Exercise: Inductance of an infinite solenoid (with linear magnetic material)

il T

C— "‘

ou-._ Q0 PVCV00PPOVVVVV00 T

) | I' :. i: II T I: I- x I. .i i I. | i| !I I' 1 I| =
i X b1 £ are 1

v

Method 1:

Maxwell : @H dl = IJ ds+I— ds

. . oD
Static conditions: — =0

ot
For a linear material: B=¢H =y, H
IJ yrds=1InL

B = 0 outside of the solenoid; B = Bx inside of the solenoid
=

qu-dl = ﬂoﬂrCJ.)H'dl = ﬂour_[Jf -ds = piop, InL
C S

(ﬁB~dl;BL+O+O+O=BL

C

:>B::u0/ur[n
N2 u,u 1A
= d)B:NBA:NuOyrInA:%
;% Nuop A
Iy A

n = (N/L) number of turns per unit length
N = Number of turns of the solenoid
Attention: 4 and S are two different surfaces.

Methode 2:
...from method 1:
B = pyu In  inside of the solenoid

B=0 outside of the solenoid

=

L:%le%zV;Lz [ Tpay=1 1p j av =L Lpyy Nt A
e L L L

Method 3:
d dl

=-=N[B- =—L=— Hdaz=[J, -

& 7 ;[ ds g 7 C.E dl IJ/ ds

H =0 outside of the solenoid; H = BxX inside of the solenoid
=

$H-dl=HI |3, -ds=nil
C N
f—
H=nl
d d dI
g=——N[B-ds=——N| puH-ds=—p,u NAn—
— ! — !ﬂoﬂ, Hobt, Nn =

=

N4
L = piopt, NAn = % = top,n’V
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Exercise: Inductance of an infinite coaxial cable (with linear magnetic material)

L: Inductance of a portion of length / of the coaxial cable

Careful:
1) We assume that the current inside the conductors is zero (reasonable assumption at high

frequencies where the "skin depth" is small compared to 4).
2) A and S are two different surfaces.

A L b Method 1:

oD
Maxwell:ng-dlszf -ds+j—-ds
ot
C S S

1 - o . .. 0D
. , Static conditions: — =0
> € ot

)
5 o
\ H=H(r)u, between the two conductors

L4

= T For a linear material: B = ¢H = y 10 H

:>(ﬁH-dl=H27rr J‘Jf-ds=l
C N

—_————— =

A :>H:L
2xr

Mot 1 Flux «efficace»?
= B=
27xr

b
B B A Y
= @B—(jSB ds-J.,uO,u,H ds-II Sar ldr=1 n ln;
A a

A

Dy poul b
=L=r=m g

Method 2:
...from method 1:

I
B= ottt between the two conductors

2rr
B=0 everywhere else
=
L:L2 L pay =
[ 5 m
b
:Lz I lea’V:%’u’2 jizZZﬁrdr—’uo’u’ZJLd ,uo,u,ll
|1| . 7 (2;; o T Vs
Method 3
d dl
gz—EiB-ds $=—LE gCSH-dlziJf-ds

H=H(r)i, between the two conductors

=H-dl=H2zr  [J, ds=1
C 5 Flux «efficace»?
d dl . ppu, dl p,ul
¢ =g B =gy o s == [ S dr ==

a

Mol bdl dl

2r adi . Cdr
:/u01ur1 b

In—
27 na

=L

b

a

1.83
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