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Basics of magnetism

• Lorentz force

• Maxwell equations

• Basics of magnetostatics

• Basics of electrodynamics
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The four interactions (the four forces)

G XV, Z  29

All physical phenomena in our Universe come from four fundamental forces.
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Force «Mediators» Action
(m)

Distance dependance

Nuclear weak Bosons (W, Z) 10-18 1/r7 à 1/r5

Nuclear strong Gluons 10-15 1/r7

Electromagnatic Photon 1/r2

Gravitation Graviton 1/r2

∞
∞

~10-10 m
~10-14 m

~10-15 m

<10-18 m

<10-18 m
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«magnetic» forces

«electrical» forces

)( BvEF ×+= q

Electromagnetic force: Lorentz force

Z 29
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Electromagnetic force: A very important force

All the forces we experience in daily life, above the 
nuclear scale and except for gravity, are 
electromagnetic!

G XV
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The electric charge

19         avec    C1.602176634 10q ne n Z e −∈ ×= =

Z 30, G XVII

The electric charge is:
Quantized
Conserved

Quantized:
All known microscopic particles and macroscopic objects possess an electric charge that is an integer 
multiple, either positive or negative, of the charge of the electron.

Conserved:
The total charge of the Universe and all closed systems is constant. A positive or negative charge cannot 
disappear on its own.
A positive charge can "annihilate" an equal negative charge (e.g., electron + positron → 2 photons), but 
the total charge remains the same.
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Note 2: 
As of May 20, 2019, the elementary charge, denoted as e, 
is by definition exactly equal to:

e = 1.60217663410−19 C

Until that date, the value of the elementary charge was:

e=1.6021766208(98)×10−19 C

where the two digits in parentheses represent the 
experimental uncertainty in this value.

Note 1: 
Quarks, which are particles with a fractional charge, cannot 
be separated from the hadrons (protons, neutrons, pions, 
etc.) they form, and therefore, we do not find them 
"isolated."

Charge (C) Particle/objet
5.34×10−20 C (−1/3)e Quarks (down, strange and bottom)
1.07×10−19 C (2/3)e Quarks (up, charm and top)
1.6×10−19 C e Electron (negative), Proton (positive)
1.47×10−17 C 92e Uranium nucleus
10−15 C ≈104e Typical dust particle
10−12 C ≈107e Typical microwave frequency capacitors
10−6 C ≈1013e Typical audio frequency capacitors
10−6 C ≈1013e Rubbing materials together
104 C ≈1023e Alkaline AA battery
105 C ≈1024e Car battery
105 C ≈1024e Earth (without the atmosphere)(negative)
109 C ≈1028e World's largest battery bank 
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( )q= + ×F E v B

Who produces the E and B fields?
Static and moving electric charges.

(and certain atomic and subatomic particles with non-zero intrinsic magnetic moment)

How can we define and calculate the E and B fields?
With the Maxwell's equations.

Z 29, Z 37, G 212
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Maxwell equations0

ρ
ε

∇ ⋅ =E

0=⋅∇ B

t∂
∂

−=×∇
BE

)( BvEF ×+= q Lorentz force

m
=

Fa 2nd Newton law

Complete description of 
the classical dynamics 
of interactions between 

charged particles 
and electromagnetic fields 
(classical electrodynamics).

Electromagnetism:
A complete set of equations.

3

2

:  Electric field (V/m)
:  Magnetic field (T)
:  Total charge density (free + bound)  (C/m )
:   Total current density (free + bound)  (A/m )

ρ

E
Β

J

0 0 0 t
µ µ ε ∂

∇× = +
∂
EB J

Z 37, G 337, Z 455, J 248

The Maxwell equations are the mathematical expression of experimental results
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Newton

( , )
( , )

t
t

ρ x
J x

( , )
( , )

t
t

E x
B x

Forces
on charges

( , )tF x

Maxwell

Lorentz

0

0 0 0

0

t

t

ρ
ε

µ µ ε

∇ ⋅ =

∇ ⋅ =
∂

∇× = −
∂

∂
∇× = +

∂

E

B
BE

EB J

Maxwell

Fields produced by 
charges

)( BvEF ×+= qm
=

Fa

Newton Lorentz

"Problems of Electromagnetism"

Charges
static and moving
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form

Integral (global) 
form
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Microscopic equations:

Macroscopic equations:

0=⋅∇ B

t∂
∂

−=×∇
BE

0=⋅∇ B

t∂
∂

−=×∇
BE

2 Fields (E, B)
2 Sources (ρ, J)

4 Fields (E, D, B, H)
2 Sources (ρf, Jf)

Maxwell equations
(macroscopic and microscopic)

«Free» charges and currents

Total («free» + «bound») charges and currents 0 0 0 t
µ µ ε ∂

∇× = +
∂
EB J

0

ρ
ε

∇ ⋅ =E

fρ∇⋅ =D

f t
∂

∇× = +
∂
DH J

Z 37, Z 44, Z 455, J 248
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Total charge density

( ) ( ) ( )fρ ρ= −∇⋅x x P x

(molecules)

1( ) n
ndV
 

=  
 
∑P x p , ,

(charges)
n i n i n

i
q= ∑p x

(charges libre)

1( )f i
i

q
dV

ρ
 

=  
 

∑x

pn: Electric dipole
of the molecule n

dV contain a large number of 
electrons, atoms, and molecules around

of the x position

«free» charges

«bound» charges

P(x): Polarization

:  Total charge density (free + bound)
:  Free charge density f

ρ
ρ

Z 44, J 248



1.16

Total current density

(molecules)

1( ) n
ndV
 

=  
 
∑M x m

(free charges)

1( )f i i
i

q
dV

 
=  

 
∑J x v

( )( ) ( ) ( )f t
∂

= +∇× +
∂

P xJ x J x M x

mn: Magnetic dipole
of the molecule n, ,

(charges) 2
i

n i n i n
i

q
= ×∑m x v

M(x): Magnetization

"Free currents"

«Bound currents"

dV contain a large number of 
electrons, atoms, or molecules around

of the x position

:   Total current density (free + bound)
:   Free current densityf

J
J

Z 44, J 248
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Sources of fields E and B

Is the only source of the E and B fields the charge qi (static and moving)?
Yes, almost exactly.

(There is also the intrinsic magnetic moment (or spin) of particles (electrons, protons, neutrons,...)

( )

1( ) n
n moleculesdV
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+
"Charged" molecule or atom
(i.e., positive or negative) fixed 
or free to move 
("Free" charge)

+

Free and bound charges and currents

Fixed or free to move "neutral" molecule or atom 
with non-uniform charge distribution (e.g., electric dipole).
(“Bound” charges)

Fixed or free to move "charged" molecule or atom 
with non-uniform charged distribution 
(e.g., electric dipole).
(“Bound" and “free" charges)

"Bound" charges: The total electric charge contained in a volume corresponding to 
the size of the molecule/atom is zero. However, the distribution of charge is not 
uniform in the molecule/atom and therefore produces an electric field also outside 
the molecule. Since they also produce an electric field, they should be considered 
sources of the electric field. These are "bound" charges in the sense that, at a short 
distance in the volume of the same molecule/atom, the charges of one sign have 
corresponding charges of the opposite sign. 
Obviously, we could only consider the total charge density, but in many problems 
it is convenient to be able to separate free charges from bound charges, using 
Maxwell's macroscopic or microscopic equations, whichever are easiest to apply.
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+ +
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-
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-
+ Fixed atom with lack of electrons (positive ion). ("Free" charge)

- An electron "free" to move. ("Free" charge)

Conductors

Insulators

Fixed or free to move "neutral" molecule or atom 
with non-uniform charge distribution 
(e.g., electric dipole). (“Bound” charges)

+ 
–
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+ +
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-
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-
-

-

Conductors

"Free" Electron Motion in a Conductor 
("Free" current)

Mouvement des électrons dans un atome
autour du noyau (Courant «lié»)

+
-

-
-

-

Noyau atomique

- Electron «lié» au noyau

+

Conductors and insulators

+ Fixed atom with lack of electrons (positive ion)

- Electron "free" to move

"Bound" current: "Classical" (i.e., non-quantum) view: the motion 
around the nucleus of electrons determines a total "bound" current that 
is non-zero or zero. "Bound" current can be thought of as a non-
dissipative current localized in the atom due to the movement of 
electrons. This "bound" current produces a magnetic field like a "free" 
current. If the "bound" current is nonzero, the atom has a nonzero 
orbital magnetic moment. 
The atom can also possess a non-orbital magnetic moment (therefore 
not associated with motion around the nucleus of electrons) due to the 
intrinsic magnetic moment (spin) of each electron.



1.21

0=⋅∇ B
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0 0 0 t
µ µ ε ∂

∇× = +
∂
EB J

0
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S V

d dVρ
ε

⋅ =∫ ∫E s


C S

d d
t

∂
⋅ = − ⋅

∂∫ ∫
BE l s



0 0 0
C S S

d d d
t

µ µ ε ∂
⋅ = ⋅ + ⋅

∂∫ ∫ ∫
EB l J s s



Differential form

Integral form

Mathematical theorems of Gauss and Stokes

Microscopic equations

Maxwell equations: Integral form

J 237

0

ρ
ε

∇ ⋅ =E

0
S

d⋅ =∫ B s
⇒
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f
S V

d dVρ⋅ =∫ ∫D s


0
S

d⋅ =∫ B s


C S

d d
t

∂
⋅ = − ⋅

∂∫ ∫
BE l s



f
C S S

d d d
t

∂
⋅ = ⋅ + ⋅

∂∫ ∫ ∫
DH l J s s



0=⋅∇ B

t∂
∂

−=×∇
BE

f t
∂

∇× = +
∂
DH J

Differential form

Integral form
Macroscopic equations:

fρ∇⋅ =D

⇒

Mathematical theorems of Gauss and Stokes
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0

0
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H B M

( ) ( ) ( )
( )( ) ( ) ( )

f

f t

ρ ρ= −∇⋅

∂
= +∇× +

∂

x x P x
P xJ x J x M x

Link between the microscopic and macroscopic equations

Microscopic equations: Macroscopic equations:
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µ µ ε ∂
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∇× = +
∂
DH J

Z 44, Z 455, J 248

:  Electric dipoles density 0 in vacuum
u

)
:  Magnetic dipole )s density c
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P
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0

          Electric Susceptibility 

            Magnetic Susceptibility

               Electric Permittivity  (or dielectric constant)

              Magnetic Permeability 
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M
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B
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χ
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= =
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P E D E

M H H B

Others quantities and relations:
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N
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E:   electric field (V/m)
B:   magnetic induction or magnetic field (T)
D:   electric induction (C/m2)
H:   magnetic field (A/m)

CHAMPS

SOURCES

Quantities and SI units

A:  vector potential (T/m)
V:  scalar potential (V) POTENTIELS

ρ:   charge density (C/m3)
J:   current density (A/m2)
P:  electric dipole density or polarization (C/m2)
M: magnetic dipole density or magnetization (A/m)
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n
1 1

1 1

,
,

E B
D H

2 2

2 2

,
,

E B
D H

V C

,s sρJ

From the Maxwell equations in integral form it can be shown that:

t

( )
( )
( )
( )

2 12 1

2 12 1

2 12 1

2 12 1

0
      for  0, 0 

0

n ns

n n
s s

t t

t ts

D D
B B
E E
H H

ρ

ρ

= − ⋅ = 
  =− ⋅ = = = ⇒  =− × = 
  =− × = 

D D n
B B n

J
E E n

H H n J

2:  Density of "free" surface charges (C/m )
:  Density of "free" surface currents (A/m) 

s

s

ρ
J

Conditions at the interface between two materials
(consequence of the Maxwell equations)
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1 2

1 2

1
1 2

2

2
1 2

1

n n

t t

t t

n n

B B

H H

B B

H H

µ
µ
µ
µ

=

=

=

=

1 2

1 2

2
1 2

1

1
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2

 

t t

n n

n n

t t

E E

D D

E E

D D

ε
ε
ε
ε

=

=

=

=Linear material

No free currents,
Linear material

No free currents No free charges

Linear material

None None

ConditionsRelations Relations Conditions

No free charges,
Linear material

n: normal to the separation surface
t:  tangent to the separation surface
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D1
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E1

E2
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            (Maxwell)

0                       (assuming no free charges)
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B1

B2

H1

H2

1
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  0          (Maxwell)
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=

⇒
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( ) 0

 ( ) 0

C S S

S

t

S

C

t t

tH H

d d dt

d

h dt

d l

H H
⇒

∂
⋅ = ⋅ + ⋅
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Conservation laws
(consequence of the Maxwell equations )

0=
∂
∂

+⋅∇
t
ρJ

0W P
t
∂

∇ ⋅ + + =
∂

S

3

2
1

0ij
j j

T
t c x=

∂ ∂
+ + =
∂ ∂∑SF

1. Charge conservation

2. Energy conservation

3. Momentum conservation

= ×S E H

2
W ⋅ + ⋅

=
E D B H

P = ⋅J E

1 ( )
2ij i j i j ijT E D B H δ= − ⋅ − ⋅ + ⋅ + ⋅ ⋅E D B H

Energy flow (Poynting vector)

Energy density

Dissipated power

Maxwell tensor
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Why do we introduce potentials?
Because they often simplify the solution of practical (and theoretical) problems.

Definition of potentials (compatible with Maxwell's equations):

Potentiels

Z 503, J 239

                          V
t

∂
= ∇× = −∇ −

∂
AB A E

:  Scalar potential [V]
]: otential [T/m Vector p

V
A
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0

1 ( , )( , )
4 V

tV t dVρ
πε

′ ′
=

′−∫
xx

x x

0 ( , )( , )
4 V

tt dVµ
π

′ ′
=

′−∫
J xA x
x x

c
tt

xx ′−
−=′

Z 503, W Electromagnetic_four-potential

Programs to solve electromagnetic problems often:
1. Compute A and V from the sources J and ρ known (or determined by iterations)
2. And after compute B and E using the definitions:

               V
t

∂
= ∇× = −∇ −

∂
AB A E

From the Maxwell and with the definition  

we obtain:

 et V
t

∂
= ∇× = −∇ −

∂
AB A E

Note:
The potentials at time   depends on the sources at time temps 
due to the finite velocity of propagation of the electromagnetic perturbations
(i.e., the speed of the light )
but in many problems

t t

c

′

 the distances are short enough to consider = .  t t′
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Electrostatic and magnetostatic conditions: 
Definition

0      0      , t
t t
ρ∂ ∂
= = ∀ ∀

∂ ∂
J x

Definition of the electrostatic/magnetostatic conditions 
La densité de charge ρ est indépendante du temps.
La densité de courant J est indépendante du temps.

Electrostatic: Magnetostatic:

⇒

0

0                                                                        0

                                                                0
0                                   

t t
ρ ε

∂ ∂
= =

∂ ∂
∇ ⋅ = ∇ ⋅ =
∇× =

E B

E B
E 0

0

0

                                  
                                                                     
1 ( ) (( )                                             ( )

4 4V

V

V dV

µ

µρ
πε π

∇× =
= −∇ = ∇×

′ ′
= =

′−∫

B J
E B A

x J xx A x
x x

)

V

dV
′−∫ x x

Note: 

Charge conservation : 0 

In electrostatic static regime : 0     

   
0

t

t

ρ

ρ

∂
∇ ⋅ + =

∂
∂

=
∂

⇒
∇⋅ =

J

J
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3

0
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′ ′
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J xA x
x x

ρ=⋅∇ D
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t∂
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−=×∇
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t
∂

∇× = +
∂
DH J

General Static conditions
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x x
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∇× =H J
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f
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∂
= +∇× +

∂

x x P x
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x x P x
J x J x M x
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ρ

V E
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2

0

1 ( ) ( )( )
4 V

d xρ
πε

′ ′− ′=
′−′−∫

x x xE x
x xx x

3

0

1 ( )( )
4 V

V d xρ
πε

′
′=

′−∫
xx

x x

C

V d= − ⋅∫E l

2

0

V ρ
ε

∇ =

V= −∇E

Electrostatic
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J

A B

0

0
µ

∇⋅ =
∇× =

B
B J

0
2

( )( )
4 V

dVµ
π

′−
= ×

′−′−∫
J x xB x

x xx x
0( )

4 V

dVµ
π

=
′−∫

JA x
x x

2
0µ∇ = −A J

= ∇×B A

2
( )( )

V

dV
′−

= ×
′−′−∫

B x xA x
x xx x

Magnetostatic
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Magnetic field sources

Charges in motion
Intrisic magnetic moments of particules (electrons, protons, neutrons ...)

Earth (on the surface)
~ 0.1 mT

Permanent magnets 
< 10 T typ.

Sources of «weak» 
magnetic fields

(down to fT)

Coils with currents
< 100 T typ.

A distribution of static electric charges produces a static electric field.

A distribution of steady electric currents produces a static magnetic field.
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Biot-Savart law:
The magnetic field produced by a steady current

Note: A moving point charge does not produce a constant 
current. This means that a point charge does not produce a 
static field. We are therefore forced to deal with extended 
current distributions.

r̂

t̂

( )dB x
′x

x
0

2

0
2

ˆ( )( )  
4

ˆ( )( )      
4 V

d dV
r

dV
r

µ
π

µ
π

′ ×
=

′ ×
= ∫

J x rB x

J x rB x

Magnetic field B produced by 
the currents in an infinitesimal 
volume element dV

Magnetic field B produced 
by the currents in the 
volume V

Biot-Savart law
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( )

0

0

but :  

( )In static conditions:  ( )
4

( )( ) ( )
4

Math.: ( )  ( )

( ) 1 1( ) ( )

( ) 0              

V

V

dV

dV

f f f

µ
π

µ
π

′
=

′−

⇒

 ′
= ∇× = ∇×  ′− 
∇× = ∇× +∇ ×

⇒

     ′
′ ′∇× = ∇× +∇ ×          ′ ′ ′− − −     

′∇× =

∫

∫

J xA x
x x

J xB x A x
x x

V V V

J x J x J x
x x x x x x

J x 2

0 0
2 2

  (      ' ;     
ˆ1 ˆ                    )

ˆ ˆ( ) ( )  ( )                                                         ( )  
4 4V

rr

dV d dV
r r

µ µ
π π

= − =
 

∇ =  ′− 
⇒

′ ′× ×
= =∫

r
r x x

r r
x x

J x r J x rB x B x

Note 1: «Demonstration» of the Biot-Savart from the vector potential A:

G 227, Z 304

r̂

t̂

( )dB x
′x

x

The "curl" is computed in x-coordinates and
J(x’) is constant with respect to x.
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Note 2: 
Equivalent equations

0
2

0
2

ˆ ˆ( )       ;           ;  4

ˆ ˆ( )   4

I
d dV dV SdlSr

Idl
d

r

µ
π

µ
π

×
= = =

⇒ = ×

J r
B x J t

B x t r

r̂

t̂

( )dB x
′x

x

0
2 2

0

0
2 2

0

1 ˆˆ ˆ( )                    ( )     4 4

ˆ ˆ1 ( ) ( )
( )          ( )     4 4

V V

dV Idl
d d

r r

dV dV
r r

ρ µ
πε π

ρ µ
πε π

= = ×

′ ′ ×
= =∫ ∫

E x r B x t r

x r J x r
E x B x

Note 3: 
Analogy E and B fields

dq
    ' ;      ˆ

r
= − =

r
r x x r
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Ampere law

0 0 0

0

(Maxwell)-Ampère law:   

Static conditions:  0 

C S S

C S

d d d
t

t

d d

µ µ ε

µ

∂
⋅ = ⋅ + ⋅

∂

∂
=

∂
⇒

⋅ = ⋅

∫ ∫ ∫

∫ ∫

EB l J s s

E

B l J s





In magnetostatics, the Ampère's law allows us to determine the value of the magnetic field based on the 
given electric currents. This law is the magnetostatic equivalent of Gauss's law.
To be applied analytically in a simple way, Ampère's law requires that the considered problem has "high" 
symmetry (as in the case of Gauss's law for the electric field).
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z

( )2
2 2

0
2

0

0

0

ˆ ˆ
2 2

2 2

2
2 2

4

1               1cos cos

4

4

          ( , ,0)   4 ( )

( , ,0)        
( )

ˆ           = (1 ) cos  
(1 )

ˆˆ

ˆˆ

dy d dy xtg xtg x dy x x tg dd d

Idld d x yr x y

Id x y
x y
I tg d

x tg

Idy

dy

x

π

θθ θ θ θθ θθ θ

π

π

µ

µ

µ

µ
π

θ θ θ
θ

×

⇒

⇒

= ⇒ = = ⇒ = = +

= ⇒ =
+

= =
+

+
+

×

×

t rB B

B

φ

y r

y r

0

0 0

0

                

/2

/2

2 2

4

4 2

2

ˆ   cos

ˆ ˆ( , ,0)     cos     

ˆ( , , )   
       

I d
x

I Ix y d
x x

Ix y z
x z

π

π

π

π π

π

µ

µ µ

µ

θ θ

θ θ

⇒

−

=

= =

=

∫

+

φ

B φ φ

B φ

I

a. Computed with the Biot-Savart law

y

z
x

Exemple: Current in a conductor
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b. Computed with the Ampere law

0 0 0

0

0 0

Cylindrical sy

 

mmetry:

Cyl

 

i

Ampere law:   

Static conditions:  0

ˆ 

Current in the wire:

  

 nd t

 

rica s

   

y ˆl mm r

 

e y:

C S S

C S

f
S S

S

d d d
t

t
d d

B

d d I

d I

B

µ µ ε

µ

µ µ

∂
⋅ = ⋅ + ⋅

∂

∂
=

∂
⇒ ⋅ = ⋅

=

⋅ = ⋅ =

⇒ ⋅ =

=

⇒

∫ ∫ ∫

∫ ∫

∫ ∫

∫

EB l J s s

E

B l J s

B φ

J s J s

J s

B φ





0

      2

    
2

C

d rB

IB
r

π

µ
π

⋅ =

⇒ =

∫ B l


y

z
x

2 2r x z= +
z

The symmetry of the problem
allows one to "intuitively" determine

the direction of the B field.
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Exemple: Magnetic field inside a infinite rectilinear wire

0 0 0
( ) ( ) ( )

2 2

2 2
( ) ( )

2

0 2
( )

(

l

Ampere law:             Static conditions:  0

 

Cylindr

 

ˆ 

For :

 

a

     

    

ic  symme

 

try:

      

C r S r S r

f
S r S r

C r

C r

d d d
t t

B
r rr R d d I I
R R

rd I
R

µ µ ε

π
π

µ

∂ ∂
⋅ = ⋅ + ⋅ =

∂ ∂

=

≤ ⋅ = ⋅ = =

⇒ ⋅ =

∫ ∫ ∫

∫ ∫

∫

E EB l J s s

B φ

J s J s

B l

B





)

0
2

2

        (for )
2

d rB

I rB r R
R

π

µ
π

⋅ =

⇒ = ≤

∫ l


dl

Computed with the Ampere law

The symmetry of the problem
allows one to "intuitively" determine

the direction of the B field.
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Example: Magnetic field produced by a current
in a single turn circular planar coil

0 0
2 2

No analytical solution (i.e., only numerical solutions), except along the coil axis .

Analytical solution along the coil

ˆ ˆ1 '( )   ( )      
4 ' 4'

(0,  0, ) : axis       

V C

IdV dl

d

r

z

µ µ
π π

µ

− ×′= × =

=

−−∫ ∫
x x t rB x J x
x xx

B

B

x 

( )

( ) ( )

0 0
2 2

2 2

2 2

0 0
3/22 2 2 2 2

2 2 2
0 0

3/2 3/22 2 2 2
0 0

0

ˆ ˆ         sin sin  
4 4

sin    et     sin

sin
4 4

ˆ ˆ ˆ(0,0, )
4 2

(0,0, z)

z

z

R R

z

Idl IdldB dB
r r

Rr R r z R
z R

Idl R IdlRdB dB
r z R z R

IRIRz dB dl
z R R z

π π

µθ θ
π π

θ θ

µ µθ
π π

µ µ
π

µ

× ⇒ = =

= = + ⇒ =
+

⇒

= = =
+ +

⇒

= = =
+ +

⇒

=

∫ ∫

t r

B z z z

B
( )

2
0

3/22 2
ˆ ˆ                             (0,0,0)

22

IR I
RR z

µ
=

+
z B z

Computed with the Biot-Savart law

Notes:
1.The symmetry of the problem is not sufficient to
use Ampère's law to obtain the magnetic field
(Ampère's law is valid but "useless" for this problem).
2.An analytical expression for the field can only
be found along the axis of the coil.
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Example: Magnetic field inside a long solenoidal coil

L

0

3  1   T  ;     1  0 /m         800 A
B

B n I nµ
= = ⇒ = ≅Exemple:

0 0 0

0 0

0

  

Static conditions: 0

No bouded currents: 

ˆBut: 0  outside (far from the coil);    inside

        0 0 0  

et:  

C S S

f

S S

f

C S

C

d d dt

t

d d

d d

B

d BL BL

µ µ ε

µ µ

µ

∂
⋅ = ⋅ + ⋅

∂

∂
=

∂

⋅ = ⋅

⇒

⋅ = ⋅

≅ ≅

⇒ ⋅ ≅ + + + =

∫ ∫ ∫

∫ ∫

∫ ∫

∫

E
B l J s s

E

J s J s

B l J s

B B x

B l







0 0

0

    f

S

d InL

B In

µ µ

µ

⋅ =

⇒
=

∫J s

x

x

Not easy to demonstrate

Computed with the Ampere law

The symmetry of the problem
allows one to "intuitively" determine

the direction of the B field.

I: Current (A)
L: Coil length (m)
N: Number of turns (-)
n=N/L: number of turns per unit of lenght
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Example: Magnetic field inside a long solenoidal coil
filled with a linear material

0

0 0 0

0

  

Static conditions: 0

In a linear material: 

ˆ0  outside;    inside

0 0 0        

f

C S S

r

f

S

r r f r

C C S

C

r

d d dt

t

d InL

B

d d d InL

d BL BL

B In

µ µ µ

µ µ µ µ µ µ

µ µ

∂
⋅ = ⋅ + ⋅

∂

∂
=

∂
= =

⋅ =

≅ ≅
⇒

⋅ = ⋅ = ⋅ =

⋅ ≅ + + + =

⇒
=

∫ ∫ ∫

∫

∫ ∫ ∫

∫

D
H l J s s

D

B H H

J s

B B x

B l H l J s

B l



 



I: courant
n: nombre de tours par unité de longueur
µ: perméabilité magnétique

L

Computed with the Ampere law
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0

0   
   

    

M
H nI
B nIµ

=
=
= 0 0 0

   
    ( ) (1 )  r

M H
H nI
B H M nI In

χ

µ µ χ µ µ

=
=
= + = + =

LL

Empty solenoidal coil Solenoidal coil filled with a linear material
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Magnetic field produced by different «structures»

B

I

Solenoidal coil

I

B

x x x x x x ..... .

Planar coil (with several turns)
Infinite wire

Toroidal coil



1.50

1. Uniform B-field and velocity v┴B

2

ˆ ˆ     ;         ;

ˆ          

ˆ ˆ          et        et    

  

z

r

r r

B v

m q qvB

qvB d
r v rm dt

mv
r qB

q
Bm

θ

ω ω

ω

=− =

⇒
= = × =−

⇒

=− = = − =

⇒

=

=

B e v e

F a v B e

v
a e a e

Uniform circular motion

Larmor radius

Cyclotron frequency

Note: for particles with q>0 and q<0 the direction of rotation is opposite

q
m=ω B

Trajectory of a charged particle in a B-field

Z 366

2

2

2

2

ˆ ˆcos( ) sin( )   
ˆ ˆsin( ) cos( )    

ˆ ˆcos( ) sin( )
ˆ r

r t r t
r t r t

r t r t
r

ω ω
ω ω ω ω

ω ω

ω

ω ω

ω

= + ⇒
⇒ = = − + ⇒

⇒ = = = − − ⇒

⇒ = − =

r x y
v r x y
a v r x y
a r e




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Uniform circular motion in the perp plane. to B
and
constant speed in the direction of B

2. Uniform B-field and arbitrary velocity v
ω

q >0

2

2 2 2

 

ˆ ˆ ˆ          ;           ;            

ˆ ˆ    ( )       0          

    ( )   0            ( )    ( )   0         

 

|

 

| 

 

   

 

d

d
co

m q B v vdt
d q dv
dt m vdt

d q d
vd d n tt m t dt

v v

const

s

v

⊥ ⊥

⊥

= = × = = +

⋅ = ⋅ × = = ⇒

⋅ = ⋅ × = ⇒ ⋅ = = ⇒ =

−

=

=

v
F v B B e v e e

v
e e v B

v
v v v vv B v



  



 



        

( )
      et              

                  

   const

d d q q
dt dt m m m

mv
v r r q

v n

B

co st

ω

⊥

⊥ ⊥

⊥
⊥

= ⇒

×
= = = × = = × ⇒ =

=

=

−

= ⇒

v ω r F
a ω v a v B ω B

Z 366
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4. Magnetic "mirror" (Z 375) 5. Charged particles that are approaching 
the Earth (Z 378)

The mirror effect results from the tendency for charged particles to bounce back from 
the region where the field is strong (magnetic confinement).

Z 375

The charged particles are trapped by the Earth's magnetic field. A charged particle 
spirals between two magnetic mirrors near the North and South poles. These particles 
collide with atoms and molecules in the atmosphere. The de-excitation of these atoms 
and molecules creates the Aurora.
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6. Speed selector

( )2The particles passing though the hole in  S i.e., the selected particles  have a velocity:

 
E

v B=

No deviation
/B E qvB qE v E B

⇒
= ⇒ = ⇒ =F F
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2
0

1
2

0;        ;     v mv q V≅ = ∆

1/21 2
      ( )mv m

r VqB B q= = ∆

Ionization: atoms ions 
(by bombardment with electron beam)

Acceleration:

Mass analysis:

7. Mass spectrometer

∆V

Ionization

Gas input 

Acceleration

Detector

Mass analysis

m3

m2

m1

m3> m2> m1
(but q3=q2=q1)

     v0      v
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Spectre de masse de l’air
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8. Magnetic lens for electron microscope (Z 358)
Charged particles (electrons) with initially parallel (or nearly parallel) trajectories are focused by a circular current loop.

9. Magnetic trapping (Z 377)
Trapping of the magnetic field at the local minimum occurs for atoms 
whose total angular momentum is anti-parallel to the local magnetic field.

Note: 
1) The Ioffe-Pritchard trap is designed to trap neutral 
particles but with a non-zero magnetic moment.
2) It is impossible to produce a local maximum of the 
magnitude of the magnetic field in free space. This means 
that it is not possible to trap a particle with a magnetic 
moment parallel to the local magnetic field.

     PE =− ⋅m B
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Electrostatic energy and magnetostatic energy

Electrostatic case:
The total electrostatic energy UE of an isolated charge distribution is the total reversible work 
required to create the charge distribution and its associated electric field.

Magnetostatic case:
The total magnetostatic energy UB of an isolated current distribution is the total reversible work 
required to create the current distribution and its associated magnetic field.

G 199, J 165, Z 180, J 212, Z 385

2 2
0 0

2

0

1 1                  :  total electrostatic energy                   : density of electrostatic energy
2 2
1                   : total mag

We can demonstrate that:
In vacuum

2

:

E E E E
V

B B
V

U dV U u u

U dV U

ε ε

µ

= =

=

∫

∫

E E

B 2

0

1netostatic energy                    : density of magnetostatic energy
2

In presence of a linear material:
1 1                   : total electrostatic energy                   
2 2

B B

E E E
V

u u

U dV U u

µ
=

= ⋅ = ⋅∫

B

E D E D     : density of electrostatic energy

1 1                   : total magnetostatic energy                    : density of magnetostatic energy
2 2

E

B B B B
V

u

U dV U u u= ⋅ = ⋅∫H B H B



1.58

   0 ∇ ⋅ =B

Coupling between electric field and magnetic field

Electrostatics and magnetostatic: "hidden" coupling

Electrodynamics: "manifest" coupling

0 µ∇× =B J
0

 
ρ
ε∇ ⋅ =E

   0 ∇× =E

0
  
ρ
ε∇ ⋅ =E

    t
∂

∇× =−
∂
B

E

   0 ∇ ⋅ =B

0 0 0        tµ ε µ
∂

∇× = +
∂

J
E

B

A time-dependent field B "produces" an E field
A time-dependent field E "produces" a B field
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Transformations between inertial frames of reference

( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )
( ) ( )( )
( ) ( )

( )( ) ( )
( ) ( )

2

2

2

2

2 2

ˆ ˆ1

ˆ ˆ/ 1

ˆ ˆ/ 1

ˆ ˆ1

/                         

ˆ ˆ1           /

ˆ /             1/ 1 /

for 

c

c

V c V C

c

v c

v

γ γ

γ γ

γ γ

γ γ

γ γ

γρ γ ρ γ ρ

γ

′ = + × − − ⋅

′ = − × − − ⋅

′ = + × − − ⋅

′ = − × − − ⋅

′ ′= − = − ⋅

′ ′= − + − ⋅ = − ⋅

−

E E v B E v v

B B v E B v v

D D v H D v v

H H v D H v v

A A v A v

J J v J v v J v

v v v 

( )
( )

2

2

2

2

,  1 (non-relativistic approx. )

                   /

/          

/                 
                        /

c

c

c

c V V
c

γ

ϕ

ρ ρ ρ

<< ≅ ⇒

′ ′≅ + × ≅ − ×

′ ′≅ + × ≅ − ×

′ ′≅ − ≅ − ⋅

′ ′≅ − ≅ − ⋅

E E v B B B v E

D D v H H H v D

A A v A v
J J v J v

Principle of relativity: 
All the laws of nature must be the same for all observers of inertia.

Example of a "hidden" 
coupling 
between B and E

S

S

S’

S’
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Example: Charge q in motion with constant velocity v=(v,0,0):

2

2

From the transformation law of the previous page:
    '                                 '

    ( '   ' )              ( '   ' / )

    ( '   ' )              ( '   ' / )

In this examp

x x x x

y y z y y z

z z y z z y

E E B B

E E v B B B v E c

E E v B B B v E c

γ γ

γ γ

= =

= + = −

= − = +

2 2 2
2

le  '   0

  '  ;       ' '  ;       ' '

1
    '  0 ;       ' /     /  ;       /    (      ) 

x x y y y z z z

x x y z z z y

E E E E E E E E

B B B v E c v E c B v E c
c

γ γ

γ

=
⇒

= = > = >

= = =− =− = ⇒ = ×

B

B v E

E

( )2 2 1/ 1 / 1v cγ γ≡ − ⇒ ≥

v

E'

In the S reference system, 
The magnetic field is non-zero!!
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Example: Current I in a neutral conductor.

0≠v
I

( )2

2

2

   
but =0  0   

/

but 0                

but =0    

/
but 0  /

c

c
c

ρ

ρ
ρ

ρ ρ

ρ ρ

′ ≅ + ×
′⇒ = ⇒ ≅ ×

′ ≅ − ×

′= ⇒ ≅

′ ≅ −
′⇒ ≅

′ ≅ − ⋅

′= ⇒ ≅ − ⋅

E E v B
E E v B

B B v E

E B B

J J v
J J

J v
J v

S’

′E
′B

S
The wire is stationary in 
reference system S

The compass is still 
in the reference system S',
moving at a constant speed v
with respect to S.

In the S' reference 
system, the electric field 
and charge density are 
nonzero!!
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Faraday's experiments...

( )

 

In all three cases, Faraday observed:        avec  

: surface inside the circuit 

S t

I d
R

C

d
dt

S

ε ε= = − ⋅∫ B s

Circuit in motion
in field B 
independent of time

Static circuit 
in a field B 
produced by a moving
source

Static circuit 
in a time-dependent B
field

G312

S

⊗ ⊗ (t)

Note: 
The units of the induced electromotive force are volts [V].
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The Faraday experiments:

1) "permitted" to Maxwell to formulate the (Maxwell)-Faraday-Lenz equation
 

                           

2) "stimulated" the introduction of concept of 

C S

d d
t t

∂ ∂
∇× = − ⋅ = − ⋅

∂ ∂∫ ∫
B BE E l s



( )

"induced" electromotive force .

S t

d
dt

d

ε

ε = − ⋅∫ B s
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Electromotive "force" induced, approximately...

( )

The induced electromotive force ,  always computed in the reference of ,  is:

(valid for all surfaces ,static or moving, having countur , 
with  in the static or moving referenc

B
S t

d d
dt dt

C

d

S C

ε

ε ≅ − = − Φ⋅∫ B s

 
B

( )
( ) ( )

e frame with respect to )

but also:

(valid  for all countours  in mouvement with velocity  
with respect to the static frame of reference,  and  are in the static frame of 

C t C t

S

d d

C

ε ′≅ + ⋅ ≅ ⋅×∫ ∫E l Ev B l

v
E B
 

We can choose to use one or the other equation depending on the one easier to apply. 

reference, 
 is the moving frame of reference with  )  C′E
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Example: Induced electromotive force in a closed circuit C



1.66

Example: wire moving in a uniform magnetic field

( )

( )

=  

Si 0
C C

C

d d

d vBl

ε

ε

′ ⋅ = + × ⋅

= ⇒

= × ⋅ =

∫ ∫

∫

E l E v B l

E

v B l

vIntuitive explanations:
(Seen from the fixed frame of reference):
Lorentz force on the moving electrons

e= ×F v B

B v

F

(Seen from the mobile frame of reference):
Lorentz force on the "static" electrons 
due to the non-zero electric field in the
moving frame

( )e e e′= = + × = ×F E E v B v B

l
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Example: Homopolar generator (Faraday disk)

B

v

+

e= ×F v B

"Intuitive" explanation (seen from the fixed frame of 
reference): Lorentz force acting on moving electrons

The induced "fem" and the current are 
independent of time (i.e., "DC").

RD Sliding contact

R
I

( )

( ) 2

0
2

=         but: 0

1     
2

2

D

C C
R

D
C

D

d d

d rBdr R B

R BI
R R

ε

ε ω ω

ωε

′ ⋅ = + × ⋅ = ⇒

= × ⋅ = = ⇒

= =

∫ ∫

∫ ∫

E l E v B l E

v B lF B

+F
v

B

"Rigorous" explanation:

191.6 10  Ce −≅ − ×
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Example: Fixed closed and almost closed loop 
in a uniform variable magnetic field

0
0I

ε ≠
=

a

b

a

b

 

The  and  field act on the e
 ( )

a time dependent  field produces a field 

lectrons with the 
Lorentz force

t

q

∂
∇× = −

∂
⇒

= + ×

BE

B E

E B
F E v B

F

+
+
+

0
0I

ε ≠
≠

---
          

=  

Almost closed circuit:   0
Closed circuit:               0    

                                    (for = )

S

d d
dt

I
Z

Z I
Z I

L R Z L R R I
R

ε

ε

εω ω

= − ⋅

⇒

= ∞ ⇒ =
≠ ∞ ⇒ ≠

<< ⇒ + ≅ ⇒ =

∫B s( )tB

( )tB

"Intuitive" microscopic explanation:
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Microscopic "rigorous" explanation:

( )

( ) 2

2

ˆ    (not easy to demonstrate !)

ˆ

=  =

but 

 = 2

2

C C C

S S C S

C

d d d

d dBd d d d r
dt t t dt

E

d rE

dBr
dt

r dB
dt

ϕ

ϕ

ε

ε π

ε π

ε π

′ ⋅ = + × ⋅ ⋅

∂ ∂
= − ⋅ = − ⋅ + × ⋅ = − ⋅ = −

∂ ∂

≅

⇒

⋅ =

= −

⇒

= −

∫ ∫ ∫

∫ ∫ ∫ ∫

∫

φ

φ

E l E v B l E l

B BB s s B v l s

E

E l

E



Note: 
If the charges are initially stationary, the magnetic field does 
not produce any force on the charges. However, a variable 
magnetic field produces a variable electric field that can act 
on an initially stationary charge "locally" with the Lorentz 
force. Once the charges are in motion, they feel both the 
magnetic force and the electric force.

G 317

Static circuit 0⇒ =v
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Note 1: 
In a solenoid, 
a time-dependent magnetic field 
produces an electric field
(without demonstration).

Note 2: 
In a capacitor, 
a time-dependent electric field 
produces a magnetic field
(without demonstration).
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Example: Moving conductor in time-independent B-field

2 2 2 2

The power needed to move 
the conductor at constant speed 
is equal to the power dissipated in the resistor.

Note:

      ( )             

          

app R

B l v V
P F v IlB v PR R

V Bl v
I R R

= = = = =

= =

"Methode" 1: 

 =  =     

                            

B
S

B
B

d dd
dt dt

d dxBl x Bl Bl v Bl v
dt dt

ε

ε

− ⋅ − Φ

Φ
Φ =− ⇒ =− =− ⇒ =

∫B s

=      Bvlε

( )

( ) ( )
0

"Method" 2:

 

0

 =

C C

l

C

d d

d d vBl

Blv

ε

ε

ε

′= ⋅ = + × ⋅

=
⇒

× ⋅ = × ⋅ =

⇒
=

∫ ∫

∫ ∫

E l E v B l

E

v B l v B l

=

B



1.72

Example: Coil in motion at speed v in time-independent field B

x

vI
l

:  Magneetic field (0,0, )
:  Current induced in the coil due to the mouvement of the coil in the non uniform field 
:  velocity of the coil

zB
I

−B
B

v

 =  =     

            

            

    

B
S

B

B

d dd
dt dt

Bl x
d dxBl Bl v

dt dt
Bl v
Bl vI

R R

ε

ε
ε

− ⋅ − Φ

Φ =− ⇒
Φ

=− =−

⇒ = ⇒

= =

∫B s
B
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Example: Convective (eddy current) electric currents

      Bd
dtε
Φ

=−

Induced current I

Force on induced current I

   I d
Γ

= ×∫F l B


The force F opposes the motion
~ viscous friction

     I R
ε

=
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Note: The sign of the emf (Lenz's law)

The flux created by the induced current is opposed 
the variation of the external flow (negative feedback)
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Applications of Faraday-Lenz Law:
Conversion of electrical energy to mechanical energy (and vice versa)

        sin  Bd
NBA tdtε ω ω

Φ
=− =−
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Inductance and capacitance

[C] = C/V = F=Farad  C Q
V


The capacity C of a conductor is the total charge Q
on the conductor when it is held at a potential of 1 V 
(with all other conductors being maintained at zero 
potential).

+

+

+

+

+ + +
+

+
+

+

+

+
+

+

+

+

++
+

+

Capacity (self-capacity):

Inductance (auto-inductance):

  BL I
Φ


[L] = Tm2/A = H=Henry

The inductance L of an electrical circuit is defined as 
the ratio between the flux of the magnetic field B
embraced by the circuit and the current I. 
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BL I
Φ



Note:
Two common definitions of inductance:
1) The inductance L of the electric circuit is the ratio between the flux of the 
magnetic field embraced by the circuit and the current:

This definition has two "disadvantages":
a) Flux is a physical quantity that is difficult to measure directly. The "circuit area" is not always easy 

to determine, and in some cases it does not even exist (e.g. if the circuit "knots").
b) The definition assumes that the flux is proportional to the intensity of the current. This is not the 

case when the flux passes through a non-linear magnetic material.

2) The self-induced fem of an electronic circuit is proportional to the rate of temporal variation of the 
current I in the circuit. The parameter relating the fem to the current variation is defined as inductance 
(or self-inductance). 

  
dI

L dtε =−

This has only the disadvantage b).

(the flux is the one produced by the current I flowing through the circuit and not 
the one coming from another source (another current, magnet, etc.))
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The capacitance matrix and the inductance matrix

The capacitance matrix C describes how a set of charged conductors influence each other electrically. 
The capacitance matrix (which must be measured or calculated) relates the load Qi on conductor i to the potential Vj of conductor j 
for a set of N conductors:

1 1 1 1

1 1                                                                                   2

a

2

=          
Mutual ca 

      :  Capacitance
 avec    : paci t  

N N NN

i ij j E i i ij i j
i i i j

ii i

ij

Q C V U QV C VV

C C
C i j

= = = =

= = =∑

≠

∑ ∑∑

nce

The inductance matrix M describes how a set of current-carrying circuits influence each other magnetically. 
The inductance matrix (which must be measured or calculated) connects the magnetic flux ΦB,i through the circuit with the current
Ij in the circuit j:

J 43, J 215,  Z 136, Z 396 

( )

The capacitance of the conductor  i.e.,  is 
the total charge of the conductor when it is at  
at a unitary potential i.e., = 1 V , and all others conductors
are at a zero potential = 0 fo

( )

(i.e., 
i

j

ii

V

i

V

C

r ).j i≠

, ,
1 1 1 1

1 1                                                                          2 2

=                 :  Inductance
 avec      :  Mutual inductance

N N NN

B i ij j B B i i ij i j
j i i j

ii i

ij

M I U I M I I

M L
M i j

= = = =

Φ = = Φ =∑

≠

∑ ∑∑
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( ) ( ) ( ) ( )0 0
2

1 1'           '4 4

=                 :  Inductance
 avec      :  Mutual inductance

i j i i

i j i i
ij ii i

i j iV V V V

ii i

ij

M dV dV M L dV dVI I I

M L
M i j

µ µ
π π

′ ′⋅ ⋅
= = =

′ ′− −

≠

∫ ∫ ∫ ∫
J r J r J r J r

r r r r

Note: 
It can be shown that:

J 41, Z 396 

( ) ( ) ( ) ( )0
2

0

1 1 1'           '4 4

=                :  Capacitance
 avec  Mutual capacitance     :  

i j i i

i j i i
ij ii i

i j iV V V V

ii i

ij

C dV dV C C dV dVVV V

C C
C i j

ρ ρ ρ ρµ
π πε

′ ′
= = =

′ ′− −

≠

∫ ∫ ∫ ∫
r r r r
r r r r
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Self-inductance and self-capacitance: 
More general definition

J 215,  J 264, Z 395

ZV

2 2 2 2

2

For low frequencies and low radiation losses  

1 2 1 2=                                                                 

1 1                                   
2 2

B E
V V

B
V

L dV U C dV U
I I V V

U dV L I

⇒
⇒

= ⋅ = ⋅ =

= ⋅ =

∫ ∫

∫

B H E D

B H 2

2 2 2 2
2 2

1 1                               
2 2

For linear materials:  et     

1 1 1 1                                                           

E
V

u u
V V V V

U dV C V

L B dV B dV C E dV E dV
I V

ε µ

ε ε
µ µ

= ⋅ =

= =
⇒

= = = =

∫

∫ ∫ ∫ ∫

E D

D E B H

I

Energy stored in a 
inductor L with current I Energy stored in a 

capacitor C with voltage V

"Unitary" magnetic field
(i.e., created by a current I=1 A)

"Unitary" electric field
(i.e., created by a voltage V=1 V)



1.81

( )

( )

* *

*
2

 

D

 

emostr
Energy conservation (see J 264):
1 1 2              Impedance:         
2 2

1Re R 4

ati

e m 2

on:

I

i

i
i i f m e

iV V S S

i
f m e

i V V S Si

VI V dV i w w dV da Z Z R jX
I

VR dV w w dV d
I I

ω

ω

−

−

= ⋅ + − + ⋅ = +

    
= = ⋅ + − + ⋅    

     

∫ ∫ ∫

∫ ∫

J E S n

J E S n





( )*
2

*
2

1                     Im Im 4 Re

For low frequency and low radiation loss 

1 Re                                  

i

i
f m e

i V Vi

f
Vi

Va X dV w w dV
I I

R dV
I

ω
          = = − ⋅ + −       

         

⇒

 
≅ ⋅ 

 

∫ ∫ ∫

∫

J E

J E



( )2

2 2

2 2

4 1                                                                      

4 1 4                       

1 1*                *

For linear

m e
Vi

m e
V Vi i

V Vi i

X w w dV L
CI

L w dV w dV
CI I

L dV C dV
I V

ω ω
ω

ω ωω
ω

≅ − = − ⇒

= =

⇒ = ⋅ = ⋅

∫

∫ ∫

∫ ∫B H E D

2 2 2 2
2 2

 materials:  et     
1 1 1 1              u u

V V V Vi i

L B dV B dV C E dV E dV
I V

ε µ

ε ε
µ µ

= =

⇒ = = = =∫ ∫ ∫ ∫

D E B H

( )( )
( )( )
1 2

1 4 * *
EM

EM

u

w

⋅ + ⋅

⋅ + ⋅

E D B H

E D B H




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Exercise: Inductance of an infinite solenoid (with linear magnetic material)

l

0

h

M

e

eth

s

od 3

                                     

ˆ0  outside of t  olenoid;    inside of the solenoid

   

: 

   

f
A C S

f
C S

r
A A

d dIN d L d d
dt dt

B

d Hl d nlI

H nI
d dN d N
dt dt

ε ε

ε µ µ

= − ⋅ = − ⋅ ≅ ⋅

≅ ≅
⇒

⋅ = ⋅ =

⇒
=

= − ⋅ = −

∫ ∫ ∫

∫ ∫

∫

B s H l J s

H H x

H l J s

B s





0

2
20

0 0

r

r
r r

dId NAn
dt

N AL NAn n V
L

µ µ

µ µµ µ µ µ

⋅ = −

⇒

= = =

∫ H s

x

S

n = (N/L) number of turns per unit length
N = Number of turns of the solenoid
Attention: A and S are two different surfaces.

z z

y

A

0

0 0

Maxwell :   

Static conditions: 0

For a linear material: 

ˆ0  outside of the solenoid

M

;    inside of the solen

1

oi

 

d

ethod :

f

C S S

r

f

S

r r f

C C

d d dt

t

d InL

B

d d

µ µ µ

µ µ µ µ

∂
⋅ = ⋅ + ⋅

∂

∂
=

∂
= =

⋅ =

≅ ≅
⇒

⋅ = ⋅ =

∫ ∫ ∫

∫

∫ ∫

D
H l J s s

D

B H H

J s

B B x

B l H l J



 

0

0
2

0
0

2
0

0 0 0        

  

   

r

S

C

r

r
B r

B r

d InL

d BL BL

B In

N IA
NBA N InA L

N A
L I L

µ µ

µ µ

µ µ
µ µ

µ µ

⋅ =

⋅ ≅ + + + =

⇒ =

⇒ Φ = = =

Φ
⇒ = =

∫

∫

s

B l


L

0

2
2 2 2 2 0

2 2 2 2

M

 

...from method 1:
    inside of the solenoid

0             outside of the solenoid
   

1 1 1 1 1 1 1 1

ethode 2: 

solenoid solenoid

r

r

V V V

B In
B

N AL B dV B dV B dV B AL
LI I I I

µ µ

µ µ
µ µ µ µ

≅
≅
⇒

= ≅ ≅ ≅ =∫ ∫ ∫
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Exercise: Inductance of an infinite coaxial cable (with linear magnetic material)

S

A

L: Inductance of a portion of length l of the coaxial cable
Careful: 
1) We assume that the current inside the conductors is zero (reasonable assumption at high 
frequencies where the "skin depth" is small compared to A).
2) A and S are two different surfaces.

( )between 
the conductors

0

2
2

2 0 0 0
2 2 2

 

M
...from method 1:

    between the two co

h

nductors
2

0            everywh e

et o  

ere lse  
  
1 1

1 1 1 12 ln
2 2

: 

2

d 2

r

V

b b
r r r

V a a

IB
r

B

L B dV
I

l l bB dV l rdr dr
r r aI

µ µ
π

µ

µ µ µ µ µ µπ
µ π ππ

=

≅
⇒

= ≅

≅ ≅ = =

∫

∫ ∫ ∫

0

0

n

M

u

etho

Maxwell :   

Static conditions: 0

ˆ  ( )    between the two co d ctors

For a linear material: 

2    

 

d 

   

   

1

2

2

:

 

f

C S S

r

f

C S

r

B

d d dt

t
r

d H r d I

I
H r

I
B r

d

φ

µ µ µ

π

π
µ µ
π

∂
⋅ = ⋅ + ⋅

∂

∂
=

∂
=

= =

⇒ ⋅ = ⋅ =

⇒ =

⇒ =

⇒ Φ = ⋅

∫ ∫ ∫

∫ ∫

D
H l J s s

D

H H u

B H H

H l J s

B s





0 0
0

0

ln2 2

ln2

b
r r

r

A A a

B r

l b
d I ldr Ir a

l b
L I a

µ µ µ µ
µ µ π π

µ µ
π

= ⋅ = =

Φ
⇒ = =

∫ ∫ ∫H s


Flux «efficace»?
0

0

n

M

t

etho

                                     

ˆ  ( )    betwee  he

 

d 3 

 two conductors

2      

2

f
A C S

f
C S

b
r

r
A A a

d dI
d L d ddt dt

r

d H r d I

d d dI dI
d d l drdt dt dt r dt

φ

ε ε

π

µ µ
ε µ µ π

= − ⋅ = − ⋅ ≅ ⋅

=

⇒ ⋅ = ⋅ =

= − ⋅ = − ⋅ = − = −

∫ ∫ ∫

∫ ∫

∫ ∫ ∫

B s H l J s

H H u

H l J s

B s H s





0

0

0

ln2

ln2

ln2

r

r

r

l b
a

l b dI dI
La dt dt

l b
L a

µ µ
π

µ µ
π
µ µ
π

⇒ − = −

⇒ =

Flux «efficace»?
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